Impact of noise on retinal coding of visual signals.
نویسندگان
چکیده
Neural noise introduces uncertainty about the signals encoded in neural spike trains. Because of the uncertainty neurons can reliably transmit a limited amount of information. This amount is difficult to quantify for neurons that combine signals and noise in a complex manner, as many trials would be needed to estimate the joint probability distribution of stimulus and neural response accurately. The task is experimentally tractable, however, for neurons that combine signals with additive Gaussian noise. For such neurons, the joint probability distribution is well defined and information transmission rates can be computed from estimates of signal-to-noise ratio. Here we use power spectral analysis to specify the contributions of signal and noise to retinal coding of visual information. We show that in the spike trains of cat ganglion cells noise power is minimal and constant at temporal frequencies from 0.3 to 20 Hz and that it increases at higher frequencies to a plateau level that generally depends on stimulus contrast. We also show that trial-to-trial fluctuations in noise amplitude at different frequencies are uncorrelated and normally distributed. Although the contrast dependence indicates that noise at high temporal frequencies contributes nonlinearly to ganglion cell spike trains, cells in the primary visual cortex are not known to respond to stimulus modulations >20 Hz. Hence, noise in the retinal output would appear additive, white, and Gaussian from their perspective. This greatly simplifies analysis of information transmission from the eye to the primary visual cortex and perhaps other regions of the brain.
منابع مشابه
Feature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition
Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...
متن کاملThe Impact of Noise on Retinal Coding of Visual Signals
Neural noise introduces uncertainty about the signals encoded in neural spike trains. Because of the uncertainty neurons can reliably transmit a limited amount of information. This amount is difficult to quantify for neurons that combine signals and noise in a complex manner, as many trials would be needed in order to estimate the joint probability distribution of stimulus and neural response a...
متن کاملSpeckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images
Introduction One of the most important pre-processing steps in optical coherence tomography (OCT) is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on ...
متن کاملEfficiency of Information Coding in Various L/M Retinal Cone Ratios
Previous evidence has shown that the number of L and M cones in retina varies significantly between subjects. However, it is not clear how the variation of L/M ratio changes the behavioral performance of the subject. A model of transformation of data from retina to visual cortex for evaluation of various L/M cones ratios is presented. While L/M cone ratios close to 1 brings the best performance...
متن کاملVisual Pattern Image Coding by a Morphological Approach (RESEARCH NOTE)
This paper presents an improvement of the Visual Pattern image coding (VPIC) scheme presented by Chen and Bovik in [2] and [3]. The patterns in this improved scheme are defined by morphological operations and classified by absolute error minimization. The improved scheme identifies more uniform blocks and reduces the noise effect. Therefore, it improves the compression ratio and image quality i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 92 2 شماره
صفحات -
تاریخ انتشار 2004